30 research outputs found

    Stability analysis of fractional differential equations with unknown parameters

    Get PDF
    In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. Using the graphical based D-decomposition method, the parametric stability analysis of FDEs is investigated without complicated mathematical analysis. To achieve this, stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space composed by unknown parameters of FDEs, and then the stability region set depending on the unknown parameters is found. The applicability of the presented method is shown considering some benchmark equations, which are often used to verify the results of a new method. Simulation examples show that the method is simple and give reliable stability results. &nbsp

    Commutativity of linear timevarying differential systems with non-zero initial conditions: a review and some new extensions,

    Get PDF
    Necessary and sufficient conditions for the commutativity of linear time-varying systems are derived in the case of nonzero initial conditions. It is shown that some commutative class of linear time-varying systems may not commute with arbitrary initial conditions. In this respect, commutativity of Euler differential systems is investigated. Explicit commutativity conditions for the fifth-order systems are solved. New results about the effects of commutativity on system sensitivity and disturbance properties are presented, which is very important for network design and industrial applications where many of the systems are composed of subsystems cooperating one after another in a chain. The results are supported by examples treated either analytically or numerically
    corecore